

Feb 19-8:47 AM

Consider the Sample below given in Stem Mot:
2 035
3 012168
4 00245589
5 23567
6 025
4) Mode:
$$65 - 20 = 45$$

3) Midrange: $65 + 20 = 85$
4) Mode: $40 \notin 45$
5) What?, of data elements fall below 40?
 $\frac{9}{25}$. $100 = 36$
(36?)
6) find class width if we wish to have
a freq. table with
a) 3 classes
CW: Range = $\frac{45}{3} = 15$
CW: 16
CW: 16
CW: 12
CW: 16
CW: 12

Jun 26-4:36 PM

Consider the Sample below
2 3 3 5
$$1^{n} = 10$$

6 6 8 8 10^{n} Range = $10-2=8$
5) $\sum x = 54$
6) $\sum x^{2} = 356$
6) $\sum x^{2} = 356$
7) $\overline{x} = \frac{\sum x}{n} = \frac{54}{10} = 5.4$
8) $S^{2} = \frac{n \sum x^{2} - (\sum x)}{n(n-1)} = \frac{10(356) - 54^{2}}{10(10-4)}$
Somple Mean
Somple Mean
9) $S = \sqrt{S^{2}} = \sqrt{7.156}$
646 = 90 Math 1: Frac
646 = 90 Math 1: Frac
9) $S = \sqrt{S^{2}} = \sqrt{7.156}$
646 = 90 Math 1: Frac
9) $S = \sqrt{S^{2}} = \sqrt{7.156}$
5 Sample
Standard Levicition
10 Standard Levicition

What is standard deviation? It is a non-negative numerical Value that indicates how data elements are spread out with respect to the mean. If S is Small=>> Data elements are close to the mean. If s is large = A Data elements are more spread out From the mean. S is Zero => No deviation *Ił* from the mean. All Jata elements are equal to T.

Jun 26-5:01 PM

Consider the Sample below
6 6 6 6 6 6

$$n=5$$
, $\sum x=30$, $\sum x^2 = 180$
 $\overline{x} = \frac{2x}{n} = \frac{30}{5} = 16$, $S^2 = \frac{n \ge x^2 - (\ge x)^2}{n(n-1)}$
 $= \frac{5 \cdot 180 - 30^2}{5(5-1)} = \frac{0}{20} = 10$
 $S = \sqrt{S^2} = \sqrt{0} = 10$ = since $S = 0$,
All dotts elements
ore equal to $\overline{x} = 6$

whenever mean = mode = median, data dist. will be symmetric & Bell-Shape. Empirical Rule: About 68% of Jota elements fall within $\overline{\chi} \pm S$ 95% of data elements fall within About $\bar{\chi} \pm 2S$ USUAL Range About 99.7% of Jata elements fall within $\overline{\chi} \pm 3S$

Jun 26-5:11 PM

I randomly selected 120 exams. Scores
had a bell-shape dist. with
$$\overline{x}$$
=85
and S=6
68%. Range => $\overline{x} \pm S$ =85 ± 6
=> [19 to 91]
95%. Range => $\overline{x} \pm 2S$ = 85 $\pm 2(6)$
Usual Range => [13 to 97]
2.5%
97
What %, of Scores were above 73?
97.5%.
How many Scores were obove 73?
97.5%. 120 = [117]

How to compare data elements from
different Samples:
1) we standowdize Score

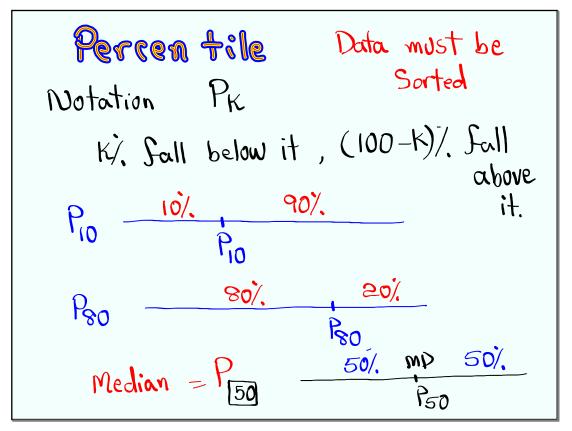
$$Z = \frac{\chi - \overline{\chi}}{S}$$
 Z-Score
2) Compare Z-Scores.
When $-2 \le Z \le 2$ I USUAL
Z(-2 or Z)2 = UNUSUAL

Jun 26-5:24 PM

John makes \$4000/mo. as a Sales person.
Mary makes \$6500/mo. as a nurse.
Who is doing better?
Sales
$$\rightarrow \bar{\chi} = 3000$$
, $S = 400$
John $Z = \frac{4000 - 3000}{400} = \frac{4000}{400} = 2.5$
Nurses $\rightarrow \bar{\chi} = 6000$, $S = 500$
Mary $Z = \frac{6500 - 6000}{500} = \frac{500}{500} = 1$

Suppose
$$\overline{x} = 125$$
, $S = 15$
1) find $\overline{z} = Score$ for data element 160.
 $\overline{z} = \frac{160 - 125}{15} = \frac{35}{15} \approx [2,333]$ unusual
2) find the data element if \overline{z} -Score is
 $2.4 = \frac{\chi - 125}{15}$ $\chi = -36 + 125$
(ross-multiply $\chi = -36 + 125$
 $\overline{\chi} = 89$
Score is Score is Score is Score is is in the second secon

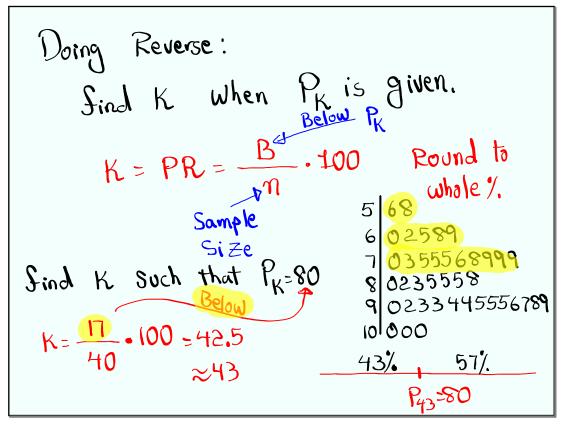
Jun 26-5:32 PM


Jun 26-5:56 PM

I randomly selected 60 exams and here
are the 5-Number Summary of Scores
30 65 75 81 100
Min Q1 MD Q3 Max
1) Box Plot
$$15 15 15$$

 $30 65 75 81 100$
Min Q1 MD Q3 Max
1) Box Plot $5 15 15$
 $30 65 75 81 100$
 $65 75 81 100$
 $15 15 15$
 $30 65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81 100$
 $65 75 81$

I randomly selected ,200 nurses. Below are the 5-Number Summary of their monthly Salaries. 1000 4000 12000 55**00** 6000 200:4= 4 Q1 MD 50 5500/50 Max Q3 Min. 50 50 50 Box Plot 12000 1000 6000 4000 $I \otimes R = \otimes_3 - \otimes_1 = 6000 - 4000 = 2000$ Upper Sence = Q3 +1.5(IQR)= \$9000 Lower Sence = Q1-1.5(IQR)=\$1000] $50051 \neq -000 \neq 12000$ Discuss outliers Mak LF UF 1000 15000 9000 Min outliers


Jun 26-6:08 PM

I randomly selected 40 exams, and here					
cire	the	Score	S		
56	58	60	62	65	l) n=40
68	69	0ר	73	75	2) Range= 100 - 56=44
75		76			3) Midvange= 100+56=78
79	79	80	85	્ર ૪૩	•
85		ষ্ণচ		3 90	4) Estimate S
92	93	93		1 94	$S \approx \frac{\text{Ronge}}{4} \frac{44}{4} \frac{1}{4}$
95	9 5	95		6 97	VOT
98	99	100	()	00 10	
6) what?, of data elements					5 68 6 02589
are below 70?				7 03555689999 8 0235558	
•				9 0233445556789	
$\frac{7}{40}$. 100 = 17.5 \approx 18%.					10 000
<u> </u>					
7) what , are below 90?				60% 40%	
$\frac{24}{40}$. 100 (6%).					90

Jun 26-6:31 PM

find P20 5 68 Sind P20 How to Sind Pr 02589 7 0355568999 8 0235558 $L = \frac{K}{100} \cdot n$ 9 0233445556789 101000 Location IS L is decimal -> Round-up PK=Lth IS L is a whole # PK = Lth element + Nex $L = \frac{20}{100} \cdot 40 = 8 \qquad P_{20} = \frac{8th + 9th}{2} = \frac{70 + 13}{2}$ $\frac{20!}{85} = \frac{8th + 9th}{2} = \frac{70 + 13}{2}$ $\frac{20!}{85} = \frac{8th + 9th}{2} = \frac{70 + 13}{2}$ $= \frac{11.5}{5}$ $\frac{20!}{100} = \frac{80!}{55!} = \frac{55!}{15!}$ Pzo R85=34th element + Next one 96+97 - 96.5

Jun 26-6:42 PM

Г

Consider the Stem Plot below
1 89 1)
$$n = 20$$

2 0 3 5 88 a) Find P₁₅
3 0 2 5559 a) Find P₁₅
4 2 3 44 8 L = $\frac{15}{100} \cdot 20 = 3$
 $P_{15} = \frac{3rd + 4th}{2} = \frac{20 + 23}{2} = 21.5$
3) Sind P₄ y P₄₄ = 19th element
L = $\frac{94}{100} \cdot 20 = 18.8$ L = 19 P₄₄ = 50
4) Find K Such that P_K = 32 4 Below
 $P_{40} = 32$ K = $\frac{10}{100} \cdot 100$
 $\frac{407}{100} \cdot \frac{607}{100} = \frac{8}{20} \cdot 100 = 40$

Class QZ 2 Consider the Sample below 2 3 3 5 1) Range = 12 - 2 - 40 8 9 10 12 2) Midrange = $\frac{12+2}{2} = 1$ 3) $\sum x = 2 + 3 + 3 + 5 + 8 + 9 + 10 + 12 = 52$ 4) $\sum x^{2} = 2^{2} + 3^{2} + 3^{2} + 5^{2} + 8^{2} + 9^{2} + 10^{2} + 12^{2} = 136$

Jun 26-7:02 PM